We have two transformations.
We will apply them to a generic point P=(x,y), and then we can replace them with any coordinates as inputs.
First transformation: translating 6 units to the right.
This changes the x-coordinate by adding 6 units (x=0 becames x'=6, for example), so we can write:
[tex]P=(x,y)\longrightarrow P^{\prime}=(x+6,y)[/tex]Second transformation: rotate 90 degrees clockwise.
This changes both x and y coordinates. We can look at a drawing to understand the transformation.
The x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative x-coordinate.
We can then write:
[tex]P^{\prime}=(x+6,y)\longrightarrow P^{\prime}^{\prime}=(y,-x-6)[/tex]So now we know that the final image of a point (x,y) after the two transformations is (y,-x-6).
Then, we can list all four points:
[tex]P=(-3,7)\longrightarrow P^{\prime}^{\prime}=(7,-(-3)-6)=(7,-3)[/tex][tex]Q=(4,12)\longrightarrow Q^{\prime}^{\prime}=(12,-4-6)=(12,-10)[/tex][tex]R=(4,-2)\longrightarrow R^{\prime}^{\prime}=(-2,-4-6)=(-2,-10)[/tex][tex]S=(-3,-7)\longrightarrow S^{\prime}^{\prime}=(-7,-(-3)+6)=(-7,-3)[/tex]Final coordinates: (7,-3), (12,-10), (-2,-10) and (-7,-3).