We can split this prism into 5 planar figures: 1 square and 4 equal triangles. The area of the square is given by
[tex]\begin{gathered} A_{\text{square}}=L^2 \\ A_{\text{square}}=9^2 \\ A_{\text{square}}=81km^2 \end{gathered}[/tex]On the other hand, the area of one triangle is given by
[tex]\begin{gathered} A_{\text{triangle}}=\frac{1}{2}\text{base}\times height \\ A_{\text{triangle}}=\frac{1}{2}9\times7.5 \\ A_{\text{triangle}}=33.75km^2 \end{gathered}[/tex]Then, the surface area S is given by
[tex]S=A_{\text{square}}+4\cdot A_{\text{triangle}}[/tex]By substituting our last results, we have
[tex]\begin{gathered} S=81+4\times33.75 \\ S=216km^2 \end{gathered}[/tex]then, the answer is 216 square kilometers