Given:
The given equation is
[tex]y=x^2+16[/tex]Required:
We need to find the inverse for the equation.
Explanation:
[tex]\text{ Let y=f\lparen x\rparen and }x=f^{-1}(y)\text{ and substitute }x=f^{-1}(y)\text{ in the given equation.}[/tex][tex]y=(f^{-1}(y))^2+16[/tex]Substract 16 from both sides of the equation.
[tex]y-16=(f^{-1}(y))^2+16-16[/tex][tex]y-16=(f^{-1}(y))^2[/tex]Take square root on both sides of the equation.
[tex]\pm\sqrt{(y-16)}=f^{-1}(y)[/tex][tex]f^{-1}(y)=\pm\sqrt{(y-16)}[/tex]Replace y=x in the equation.
[tex]f^{-1}(x)=\pm\sqrt{x-16}[/tex]Final answer:
[tex]f^{-1}(x)=\pm\sqrt{x-16}[/tex]