Respuesta :

Given:

The given equation is

[tex]y=x^2+16[/tex]

Required:

We need to find the inverse for the equation.

Explanation:

[tex]\text{ Let y=f\lparen x\rparen and }x=f^{-1}(y)\text{ and substitute }x=f^{-1}(y)\text{ in the given equation.}[/tex][tex]y=(f^{-1}(y))^2+16[/tex]

Substract 16 from both sides of the equation.

[tex]y-16=(f^{-1}(y))^2+16-16[/tex][tex]y-16=(f^{-1}(y))^2[/tex]

Take square root on both sides of the equation.

[tex]\pm\sqrt{(y-16)}=f^{-1}(y)[/tex][tex]f^{-1}(y)=\pm\sqrt{(y-16)}[/tex]

Replace y=x in the equation.

[tex]f^{-1}(x)=\pm\sqrt{x-16}[/tex]

Final answer:

[tex]f^{-1}(x)=\pm\sqrt{x-16}[/tex]