Respuesta :
Solution:
Given the shape below:
The above shape is a combination of a semicircle and a rectangle labeled as A and B respectively.
To find the perimeter of the shape:
step 1: Evaluate the perimeter of the circle.
The perimeter of the semicircle is expressed as
[tex]\begin{gathered} perimeter\text{ of semicircle=2}\pi r \\ where\text{ r is the radius} \\ \pi\Rightarrow3.14 \end{gathered}[/tex]Thus, we have
[tex]\begin{gathered} perimeter=2\times3.14\times(\frac{10}{2}) \\ =31.4\text{ cm} \end{gathered}[/tex]step 2: Evaluate the perimeter of the rectangle.
The perimeter of the rectangle is expressed as
[tex]\begin{gathered} perimeter=2(l+w) \\ where \\ l\Rightarrow length \\ w\Rightarrow width \end{gathered}[/tex]In this case, we have
[tex]\begin{gathered} l=10\text{ cm} \\ w=4\text{ cm} \\ thus, \\ Perimeter\text{ = 2\lparen10+4\rparen} \\ =2(14) \\ =28\text{ cm} \end{gathered}[/tex]step 3: Sum up the perimeters.
Thus, we have
[tex]\begin{gathered} perimeter\text{ of shape = perimeter of circle + perimeter of rectangle} \\ =31.4+28 \\ \Rightarrow perimeter\text{ of shape = 59.4 cm} \end{gathered}[/tex]Hence, the perimeter of the shape is evaluated to be
[tex]59.4\text{ cm}[/tex]