we have the equation
[tex]^2−4−4^2+13=0[/tex]Group similar terms and move the constant to the right side
[tex](^2−4)−4^2=-13[/tex]Complete the square
[tex]\begin{gathered} (y^2-4y+2^2-2^2)-4x^2=-13 \\ (y^2-4y+2^2)-4x^2=-13+2^2 \\ (y^2-4y+2^2)-4x^2=-9 \end{gathered}[/tex]Rewrite as a perfect square
[tex](y-2)^2-4x^2=-9[/tex]Divide both sides by -9
[tex]\begin{gathered} \frac{(y-2)^2}{-9}-\frac{4x^2}{-9}=\frac{-9}{-9} \\ \\ -\frac{(y-2)^2}{9}+\frac{x^2}{\frac{9}{4}}=1 \\ \\ \frac{x^{2}}{\frac{9}{4}}-\frac{(y-2)^{2}}{9}=1 \\ \end{gathered}[/tex]The coordinates of the center are (0,2)
The transverse axis is on the x-axis
a^2=9/4 -----------> a=3/2
b^2=9 -----------> b=3
The vertices are --------> (0+1.5,2) and (0-1.5,2)
so
Vertices at (1.5,2) and (-1.5,2)
Find out the value of c
c^2=a^2+b^2
c^2=(9/4)+9
c^2=45/9
c=√5
Find out the coordinates of the foci
(0+√5,2) and (0-√5,2)
using a graphing tool
The domain is the interval (-infinite, -1.5) U (1.5, infinite)
The range is the interval (-infinite, infinite)