ANSWER:
304.3 Pa
STEP-BY-STEP EXPLANATION:
We have the poiseuille law, which would be the following equation:
[tex]v=\frac{\pi\cdot\Delta P\cdot r^4\cdot t}{8\cdot\eta\cdot L}[/tex]Where,
v = volume of the liquid
r = radius
t: time
n = coefficiente of viscosity
Δp = change of pressure
L : lenght
We solve for Δp, and we would have:
[tex]\begin{gathered} \Delta P=\frac{8\cdot\eta\cdot L\cdot v}{\pi\cdot\cdot r^4\cdot t} \\ \frac{v}{t}=Q \\ \text{ therefore:} \\ \Delta P=\frac{8\cdot\eta\cdot L\cdot Q}{\pi\cdot r^4} \\ \text{ replacing:} \\ L=52.5\text{ cm = 0.525 m} \\ r=2\text{ mm = 0.002 m} \\ \Delta P=\frac{8\cdot1.3\cdot10^3\cdot0.525\cdot2.8\cdot10^{-6}}{3.14\cdot(0.02)^4} \\ \Delta P=304.3\text{ Pa} \end{gathered}[/tex]The pressure difference is 304.3 Pa