Complete the tables using the formula. Then, identify the starting amount and the amount you change by. These are linear, so the table should go up or go down by a constant amount.Y = 5x + 8

Complete the tables using the formula Then identify the starting amount and the amount you change by These are linear so the table should go up or go down by a class=

Respuesta :

Part A

x= 0 y=8

x=1 y=13

x=2 y=18

x=3 y=23

y=4 y=28

x=5 y=33

y=6 y=28

y=7 y=43

Part B

Starting point (y-intercept) = 8

Part C.

slope is 5.

STEP - BY - STEP EXPLANATION

What to find?

• The values of y at x=0,1,2,3,4,5, 6 and 7

,

• Slope

,

• Y- intercept.

Given:

y=5x + 8

To determine the values of y at each point of x, substitute into the formula given and simplify.

That is;

At x = 0

[tex]\begin{gathered} y=5(0)\text{ +8} \\ y=0+8 \\ y=8 \end{gathered}[/tex]

At x = 1

[tex]\begin{gathered} y=5(1)+8 \\ =5+8 \\ =13 \end{gathered}[/tex]

At x = 2

[tex]\begin{gathered} y=5(2)+8 \\ =10+8 \\ =18 \end{gathered}[/tex]

At x = 3

[tex]\begin{gathered} y=5(3)+8 \\ =15+8 \\ =23 \end{gathered}[/tex]

At x = 4

[tex]\begin{gathered} y=5(4)+8 \\ =20+8 \\ =28 \end{gathered}[/tex]

At x = 5

[tex]\begin{gathered} y=5(5)+8 \\ =25+8 \\ =33 \end{gathered}[/tex]

At x = 6

[tex]\begin{gathered} y=5(6)+8 \\ =30+8 \\ =38 \end{gathered}[/tex]

At x=7

[tex]\begin{gathered} y=5(7)+8 \\ =43 \end{gathered}[/tex]

Hence,

x= 0 y=8

x=1 y=13

x=2 y=18

x=3 y=23

y=4 y=28

x=5 y=33

y=6 y=28

y=7 y=43

Part B

Starting point( y-intercept).

The y-intercept is the point at which x =0

Hence, from the values above, at x=0, y=8

Hence, the starting point (y-intercept) = 8

Part C

The changes in slope.

The slope is the changes in y-intercept, the y -values kept increasing by 5.

Hence, the slope is 5.

ACCESS MORE