Given the following system of equations:
[tex]\begin{cases}4x+y=2 \\ x-y=3\end{cases}[/tex]to find the x-cooridnate of the solution, we can solve for 'y' the first equation to get the following:
[tex]\begin{gathered} 4x+y=2 \\ \Rightarrow y=2-4x \end{gathered}[/tex]next, we use this value on the second equation to get the following expression:
[tex]\begin{gathered} x-y=3 \\ \Rightarrow x-(2-4x)=3 \end{gathered}[/tex]simplifying we get the following:
[tex]\begin{gathered} x-(2-4x)=3 \\ \Rightarrow x-2+4x=3 \\ \Rightarrow x+4x=2+3 \\ \Rightarrow5x=5 \\ \Rightarrow x=\frac{5}{5}=1 \\ x=1 \end{gathered}[/tex]therefore, the x-coordinate of the solution to the system of equations is x = 1