Answer:
Explanation:
In problem 5, we can see that there is a right triangle with legs x and 16 and a hypotenuse equal to (x + 8).
So, by Pythagorean theorem, we can write the following equation
[tex](x+8)^2=x^2+16^2[/tex]Now, we can expand the left side
[tex]\begin{gathered} x^2+2(8)(x)+8^2=x^2+16^2 \\ x^2+16x+64=x^2+256 \end{gathered}[/tex]Then, subtract x² from both sides
[tex]\begin{gathered} x^2+16x+64-x^2=x^2+256-x^2 \\ 16x+64=256 \end{gathered}[/tex]Subtract 64 from both sides
[tex]\begin{gathered} 16x+64-64=256-64 \\ 16x=192 \end{gathered}[/tex]Finally, divide by 16
[tex]\begin{gathered} \frac{16x}{16}=\frac{192}{16} \\ \\ x=12 \end{gathered}[/tex]Therefore, the value of x is 12