Respuesta :

Given:

[tex]sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta=3sec^2\theta-2[/tex]

Required:

We need to prove the given equation.

Explanation:

Consider the left-hand side of the equation.

[tex]Add\text{ and subtract }3tan^4\theta.[/tex]

[tex]sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta=sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta+3tan^4\theta-3tan^4\theta[/tex][tex]=sec^4\theta+sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta[/tex]

[tex]Add\text{ and subtract -2}sec^2\theta tan^2\theta.[/tex]

[tex]=sec^4\theta+sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta-2sec^2\theta tan^2\theta+2sec^2\theta tan^2\theta[/tex][tex]=sec^4\theta-2sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta+sec^2\theta tan^2\theta+2sec^2\theta tan^2\theta[/tex][tex]=sec^4\theta-2sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta+3sec^2\theta tan^2\theta[/tex][tex]Use\text{ }sec^4\theta-2sec^2\theta tan^2\theta+tan^4\theta=(sec^2\theta-tan^2\theta)^2[/tex][tex]=(sec^2\theta-tan^2\theta)^2-3tan^4\theta+3sec^2\theta tan^2\theta[/tex][tex]=(sec^2\theta-tan^2\theta)^2+3tan^2\theta(sec^2\theta-tan^2\theta)[/tex][tex]Use\text{ }sec^2\theta-tan^2\theta=1.[/tex][tex]=1^2+3tan^2\theta(1)[/tex][tex]=1+3tan^2\theta[/tex][tex]Use\text{ }tan^2\theta=sec^2\theta-1.[/tex][tex]=1+3(sec^2\theta-1)[/tex][tex]=1+3sec^2\theta-3[/tex][tex]=3sec^2\theta-2[/tex]

We get the right-hand side of the equation.

Final answer:

[tex]sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta=3sec^2\theta-2[/tex]