Given data:
* The mass of the Moon is,
[tex]m=7.3\times10^{22}\text{ kg}[/tex]* The radius of the Moon is,
[tex]\begin{gathered} R=1840\text{ km} \\ R=1840\times10^3\text{ m} \end{gathered}[/tex]* The height of the Apollo 11 is,
[tex]\begin{gathered} h=122\operatorname{km} \\ h=122\times10^3\text{ m} \end{gathered}[/tex]Solution:
The period of revolution of the Apollo 11 around the Moon is,
[tex]T=2\pi\sqrt[]{\frac{(R+h)^3}{Gm}}[/tex]where G is the gravitational constant,
Substituting the known values,
[tex]\begin{gathered} T=2\pi\sqrt[]{\frac{(1840\times10^3+122\times10^3)^3}{6.67\times10^{-11}\times7.3\times10^{22}}} \\ T=2\pi\times\sqrt[]{\frac{(1962\times10^3)^3}{48.69\times10^{11}}} \\ T=2\pi\times1245.46 \end{gathered}[/tex]Thus, the value of time period is,
[tex]\begin{gathered} T=7825.46\text{ s} \\ T=\frac{7825.46}{60\times60}\text{ hr} \\ T=2.17\text{ hr} \end{gathered}[/tex]Thus, Apollo 11 takes 2.17 hours to complete orbit once around the Moon.