Respuesta :
SOLUTION
Write our the function given
To differentiate the function, we apply the differentiation rule
[tex]y=x^n,\frac{dy}{dx}=nx^{n-1}[/tex]Hence
[tex]\begin{gathered} y=x^3-5x^2+7x-2 \\ \text{Then} \\ \frac{d}{dx}\mleft(x^3-5x^2+7x-2\mright) \end{gathered}[/tex]Then Apply the sum and difference rule for derivative, we have
[tex]\begin{gathered} =\frac{d}{dx}\mleft(x^3\mright)-\frac{d}{dx}\mleft(5x^2\mright)+\frac{d}{dx}\mleft(7x\mright)-\frac{d}{dx}\mleft(2\mright) \\ =3x^2-10x+7-0 \\ =3x^2-10x+7 \end{gathered}[/tex]For dy/dx =0,we have
[tex]3x^2-10x+7=0[/tex]solve quadratic equation, we have
[tex]\begin{gathered} 3x^2-3x-7x+7=0 \\ 3x(x-1)-7(x-1)=0 \\ (3x-7)(x-1)=0 \end{gathered}[/tex]Equation each factor the zero, we have
[tex]\begin{gathered} 3x-7=0,x-1=0 \\ 3x=7,x=1 \\ x=\frac{7}{3},1 \end{gathered}[/tex]Hence
The x coordinates are
x= 7/3 and x=1
To obtain the coordinate of the turning point, we substitute into the equation given
[tex]\begin{gathered} y=x^3-5x^2+7x-2 \\ \text{for x=7/3} \\ y=(\frac{7}{3})^3-5(\frac{7}{3})^2+7(\frac{7}{3})-2 \end{gathered}[/tex]Then by simplification, we have
[tex]y=-\frac{5}{27}[/tex]Then, one of the turning point is
[tex](\frac{7}{3},-\frac{5}{27})[/tex]Then, we substitute the other value of x,
[tex]\begin{gathered} \text{for x=1} \\ y=x^3-5x^2+7x-2 \\ y=(1)^3-5(1)^2+7(1)-2 \\ y=1-5+7-2 \\ y=1 \\ \text{turning point =(1,1)} \end{gathered}[/tex]Therefore the other turning point is (1,1)
The turning point are (7/3, -5/27) and (1,1)