Respuesta :

To find the leg, we have to use the Pythagorean's Theorem

[tex]c^2=a^2+b^2[/tex]

Where c = 6, a = 2.

[tex]\begin{gathered} 6^2=2^2+b^2 \\ b^2=6^2-2^2 \\ b=\sqrt[]{36-4} \\ b=\sqrt[]{32} \\ b\approx5.7 \end{gathered}[/tex]

Hence, the other leg is 5.7 meters long.