Let P (x, y) be any point on the parabola whose focus is (-7,-4,) and the directrix y+1 = 0.
As we already know that the distance of a point P from focus = distance of a point P from directrix
[tex]\sqrt[=]{(y+1)^2}\text{ =}\sqrt[+]{(x+7)^2+(x+4)^2}[/tex][tex](y+1)^2=(x+7)^2+(x+4)^2[/tex][tex]y^2+1+2y=x^2+7x+49+x^2+16+4x[/tex][tex]y^2+2y=2x^2+11x+64[/tex][tex]y(y+2)=2x^2+11x+64[/tex][tex]y=\frac{2x^2+11x+64}{y+2}[/tex]