For this exercise you need to use the Work-rate formula. This is:
[tex]\frac{t}{t_A}+\frac{t}{t_B}=1[/tex]Where:
- "t" is the time for the objects A and B together.
- The individual time for object A is:
[tex]t_A[/tex]- The individual time for object B is:
[tex]t_B[/tex]In this case, you can idenfity that:
[tex]\begin{gathered} t=55 \\ t_A=2t_B \\ _{} \end{gathered}[/tex]Substitute them into the formula:
[tex]\frac{55}{2t_B_{}_{}}+\frac{55}{t_B}=1[/tex]Now you must solve for:
[tex]t_B[/tex]You get that this is:
[tex]\begin{gathered} \frac{55+2(55)}{2t_B}=1 \\ \\ \frac{55+110}{2t_B}=1 \\ 165=(1)(2t_B) \\ \\ \frac{165}{2}=t_B_{} \\ \\ t_B=82.5 \end{gathered}[/tex]The answer is: It takes the smaller pipe 82.5 hours to fill the tank.