Given that :
[tex]f(x)\text{ = 5x + 2}[/tex]We can prove that :
[tex]g(x)\text{ = }\frac{x\text{ -2}}{5}[/tex]is it's inverse doing the following:
Step 1. Set y = f(x):
[tex]y\text{ = 5x + 2}[/tex]Step 2. Switch the variables:
[tex]x\text{ = 5y + 2}[/tex]Then we solve for y:
[tex]\begin{gathered} 5y\text{ = x - 2} \\ \text{Divide both sides by 5} \\ y\text{ = }\frac{x\text{ -2}}{5} \end{gathered}[/tex]Step 3. The inverse of :
[tex]g(x)\text{ = }\frac{x-2}{5}[/tex]can be found in a similar way.
[tex]\begin{gathered} y\text{ = }\frac{x-2}{5} \\ x\text{ = }\frac{y-2}{5} \\ \text{Cross}-\text{Multiply} \\ 5x\text{ = y -2} \\ y\text{ = 5x + 2} \end{gathered}[/tex]This tells us that f(x) and g(x) are one to one functions are f(x) is the mirror image of g(x)