Triangles ABE, ADE, and CBE are shown on the coordinate grid, and all the vertices have coordinates that are integers. Which statement is true?

Triangles ABE ADE and CBE are shown on the coordinate grid and all the vertices have coordinates that are integers Which statement is true class=
Triangles ABE ADE and CBE are shown on the coordinate grid and all the vertices have coordinates that are integers Which statement is true class=

Respuesta :

To check if Triangles ABE, ADE, and CBE are congruent, let us compute for the distance of each line using the Distance Formula,

[tex]\text{ }d\text{ = }\sqrt[]{(x_2-x_1)^2\text{ + (}y_2-y_1)^2}[/tex]

Where,

d = Distance

(x1, y1) = Coordinates of the first point

(x2, y2) = Coordinates of the second point

Let's compute the distance of the following lines:

Triangle ABE: Lines AB, AE, and BE

Triangle ADE: Lines AD, AE, and ED

Triangle CBE: Lines CE, CB, and BE

For Triangle ABE,

[tex]\text{ d}_{AB}\text{ = }\sqrt[]{(-1-(-4))^2+(3-(-1))^2}\text{ = }\sqrt[]{(-1+4)^2+(3+1)^2}[/tex][tex]\text{ d}_{AB}\text{ = }\sqrt[]{(3)^2+(4)^2}\text{ = }\sqrt[]{9+\text{ 16}}\text{ = }\sqrt[]{25}[/tex][tex]\text{ d}_{AB}\text{ = 5}[/tex][tex]\text{ d}_{AE}\text{ =}\sqrt[]{(1-\text{ }(-1))^2+(0\text{ - }(-4))^2}\text{ = }\sqrt[]{(1+1)^2+(0+4)^2}[/tex][tex]\text{ d}_{AE}\text{ = }\sqrt[]{(2)^2+(4)^2}\text{ = }\sqrt[]{4\text{ + 16}}[/tex][tex]\text{ d}_{AE}\text{ =}\sqrt[]{20}[/tex][tex]\text{ d}_{BE}\text{ = }\sqrt[]{(1\text{ - (}3))^2+(0\text{ - (-1)})^2}\text{ = }\sqrt[]{(1-3)^2+(0+1)^2}[/tex][tex]\text{ d}_{BE}=\text{ }\sqrt[]{(-2)^2+(1)^2}\text{ = }\sqrt[]{4\text{ + 1}}[/tex][tex]\text{ d}_{BE}\text{ = }\sqrt[]{5}[/tex]

For Triangle ADE, let's compute for the distance of line AD and ED since we already got the distance of line AE.

[tex]\text{ d}_{AD}\text{ = }\sqrt[]{(-1-(-1))^2+\text{ (}1\text{ - }(-4))^2}\text{ = }\sqrt[]{(-1+1)^2+(1+4)^2}[/tex][tex]\text{ d}_{AD}\text{ = }\sqrt[]{(0)^2+(5)^2}\text{ = }\sqrt[]{25}[/tex][tex]\text{ d}_{AD}\text{ = 5}[/tex][tex]\text{ d}_{ED}=\text{ }\sqrt[]{(-1\text{ - (}1))^2+(1-0)^2}\text{ = }\sqrt[]{(-1-1)^2+(1)^2}[/tex][tex]\text{ d}_{ED}\text{ = }\sqrt[]{(-2)^2_{}+(1)^2}\text{ = }\sqrt[]{4\text{ + 1}}[/tex][tex]\text{ d}_{ED}\text{ = }\sqrt[]{5}[/tex]

For Triangle CBE, let's compute for the distance of line CE and CB since we already got the distance of line BE.

[tex]\text{ d}_{CE}\text{ = }\sqrt[]{(3-\text{ }1)^2+(4-0)^2}\text{ = }\sqrt[]{(2)^2+(4)^2}[/tex][tex]\text{ d}_{CE}\text{ = }\sqrt[]{4+16}\text{ = }\sqrt[]{20}[/tex][tex]\text{ d}_{CE}\text{ = }\sqrt[]{20}[/tex][tex]\text{ d}_{CB}\text{ = }\sqrt[]{(3-3)^2+(4\text{ - (}-1))^2}\text{ =}\sqrt[]{(0)^2+(4+1)^2}[/tex][tex]\text{ d}_{CB}\text{ =}\sqrt[]{(5)^2}\text{ = }\sqrt[]{25}[/tex][tex]\text{ d}_{CB}\text{ = 5}[/tex]

In summary,

Triangle ABE:

[tex]AB=\text{ 5, AE = }\sqrt[]{20}\text{ and BE = }\sqrt[]{5}[/tex]

Triangle ADE:

[tex]\text{ AD = 5, AE = }\sqrt[]{20}\text{ and ED = }\sqrt[]{5}[/tex]

Triangle CBE: CE, CB, and BE

[tex]\text{ CB = 5, CE = }\sqrt[]{20}\text{ and BE = }\sqrt[]{5}[/tex]

The sides of the three triangles shown in the grid are congruent based on the SSS Rule of Triangle.

Thus, the statement that meets our evaluation is:

D. Triangle ABE, ADE and CBE are all congruent.