Respuesta :
To check if Triangles ABE, ADE, and CBE are congruent, let us compute for the distance of each line using the Distance Formula,
[tex]\text{ }d\text{ = }\sqrt[]{(x_2-x_1)^2\text{ + (}y_2-y_1)^2}[/tex]Where,
d = Distance
(x1, y1) = Coordinates of the first point
(x2, y2) = Coordinates of the second point
Let's compute the distance of the following lines:
Triangle ABE: Lines AB, AE, and BE
Triangle ADE: Lines AD, AE, and ED
Triangle CBE: Lines CE, CB, and BE
For Triangle ABE,
[tex]\text{ d}_{AB}\text{ = }\sqrt[]{(-1-(-4))^2+(3-(-1))^2}\text{ = }\sqrt[]{(-1+4)^2+(3+1)^2}[/tex][tex]\text{ d}_{AB}\text{ = }\sqrt[]{(3)^2+(4)^2}\text{ = }\sqrt[]{9+\text{ 16}}\text{ = }\sqrt[]{25}[/tex][tex]\text{ d}_{AB}\text{ = 5}[/tex][tex]\text{ d}_{AE}\text{ =}\sqrt[]{(1-\text{ }(-1))^2+(0\text{ - }(-4))^2}\text{ = }\sqrt[]{(1+1)^2+(0+4)^2}[/tex][tex]\text{ d}_{AE}\text{ = }\sqrt[]{(2)^2+(4)^2}\text{ = }\sqrt[]{4\text{ + 16}}[/tex][tex]\text{ d}_{AE}\text{ =}\sqrt[]{20}[/tex][tex]\text{ d}_{BE}\text{ = }\sqrt[]{(1\text{ - (}3))^2+(0\text{ - (-1)})^2}\text{ = }\sqrt[]{(1-3)^2+(0+1)^2}[/tex][tex]\text{ d}_{BE}=\text{ }\sqrt[]{(-2)^2+(1)^2}\text{ = }\sqrt[]{4\text{ + 1}}[/tex][tex]\text{ d}_{BE}\text{ = }\sqrt[]{5}[/tex]For Triangle ADE, let's compute for the distance of line AD and ED since we already got the distance of line AE.
[tex]\text{ d}_{AD}\text{ = }\sqrt[]{(-1-(-1))^2+\text{ (}1\text{ - }(-4))^2}\text{ = }\sqrt[]{(-1+1)^2+(1+4)^2}[/tex][tex]\text{ d}_{AD}\text{ = }\sqrt[]{(0)^2+(5)^2}\text{ = }\sqrt[]{25}[/tex][tex]\text{ d}_{AD}\text{ = 5}[/tex][tex]\text{ d}_{ED}=\text{ }\sqrt[]{(-1\text{ - (}1))^2+(1-0)^2}\text{ = }\sqrt[]{(-1-1)^2+(1)^2}[/tex][tex]\text{ d}_{ED}\text{ = }\sqrt[]{(-2)^2_{}+(1)^2}\text{ = }\sqrt[]{4\text{ + 1}}[/tex][tex]\text{ d}_{ED}\text{ = }\sqrt[]{5}[/tex]For Triangle CBE, let's compute for the distance of line CE and CB since we already got the distance of line BE.
[tex]\text{ d}_{CE}\text{ = }\sqrt[]{(3-\text{ }1)^2+(4-0)^2}\text{ = }\sqrt[]{(2)^2+(4)^2}[/tex][tex]\text{ d}_{CE}\text{ = }\sqrt[]{4+16}\text{ = }\sqrt[]{20}[/tex][tex]\text{ d}_{CE}\text{ = }\sqrt[]{20}[/tex][tex]\text{ d}_{CB}\text{ = }\sqrt[]{(3-3)^2+(4\text{ - (}-1))^2}\text{ =}\sqrt[]{(0)^2+(4+1)^2}[/tex][tex]\text{ d}_{CB}\text{ =}\sqrt[]{(5)^2}\text{ = }\sqrt[]{25}[/tex][tex]\text{ d}_{CB}\text{ = 5}[/tex]In summary,
Triangle ABE:
[tex]AB=\text{ 5, AE = }\sqrt[]{20}\text{ and BE = }\sqrt[]{5}[/tex]Triangle ADE:
[tex]\text{ AD = 5, AE = }\sqrt[]{20}\text{ and ED = }\sqrt[]{5}[/tex]Triangle CBE: CE, CB, and BE
[tex]\text{ CB = 5, CE = }\sqrt[]{20}\text{ and BE = }\sqrt[]{5}[/tex]The sides of the three triangles shown in the grid are congruent based on the SSS Rule of Triangle.
Thus, the statement that meets our evaluation is:
D. Triangle ABE, ADE and CBE are all congruent.