Step 1:
[tex]\text{Triangle PQR is similar to triangle GHP}[/tex]Step 2:
Write the corresponding sides of the similar triangle
[tex]\begin{gathered} \\ PQ\text{ }\cong\text{ PG} \\ RP\text{ }\cong\text{ PH} \\ \frac{PQ}{PG}\text{ = }\frac{RP}{PH} \\ \\ \frac{PQ}{91}=\frac{72}{56}\text{ } \end{gathered}[/tex]Next
Cross multiply
[tex]\begin{gathered} 56PQ\text{ = 72 }\times\text{ 91} \\ PQ\text{ = }\frac{6552}{56} \\ PQ\text{ = 117} \end{gathered}[/tex]Final answer
PQ ? = 117