Answers:
2
4
6
8
Explanation:
The domain of the function with a range {-37, -25, -13, -1} will be the set of values of x when f(x) is -37, -25, -13, and -1. So, to find the correct answers, we need to solve the following equations:
If f(x) = -37, we get:
[tex]\begin{gathered} f(x)=-6x+11 \\ -37=-6x+11 \\ -37-11=-6x+11-11 \\ -48=-6x \\ \frac{-48}{-6}=\frac{-6x}{-6} \\ 8=x \end{gathered}[/tex]If f(x) = - 25, we get:
[tex]\begin{gathered} -25=-6x+11 \\ -25-11=-6x+11-11 \\ -36=-6x \\ \frac{-36}{-6}=\frac{-6x}{-6} \\ 6=x \end{gathered}[/tex]If f(x) = - 13, we get:
[tex]\begin{gathered} -13=-6x+11 \\ -13-11=-6x+11-11 \\ -24=-6x \\ \frac{-24}{-6}=\frac{-6x}{-6} \\ 4=x \end{gathered}[/tex]If f(x) = -1, we get:
[tex]\begin{gathered} -1=-6x+11 \\ -1-11=-6x+11-11 \\ -12=-6x \\ \frac{-12}{-6}=\frac{-6x}{-6} \\ 2=x \end{gathered}[/tex]Therefore, the domain is the set of the values of x: {2, 4, 6, 8}