Respuesta :

Given,

The linear pair of equations are:

[tex]\begin{gathered} 4x+2y=-3 \\ 4x-3y=22 \end{gathered}[/tex]

Required

The solution of the pairs of equations.

Taking the first equation as,

[tex]\begin{gathered} 4x+2y=-3 \\ 2y=-4x-3 \\ y=-2x-1.5 \end{gathered}[/tex]

Substituting the value of y in second equation then,

[tex]\begin{gathered} 4x-3y=22 \\ 4x-3(-2x-1.5)=22 \\ 4x+6x+4.5=22 \\ 10x=17.5 \\ x=1.75 \\ x=\frac{7}{4} \end{gathered}[/tex]

Substituting the value of x in first equation,

[tex]\begin{gathered} y=-2x-1.5 \\ y=-2(1.75)-1.5 \\ y=-3.5-1.5 \\ y=-5 \end{gathered}[/tex]

Hence, the solution of the system is(7/4, -5).