Find the composition of transformations thatmap ABCD to EHGF.Reflect over the [? ]-axis, then translate(x+[ ], y+[ ]).Note: Enter x ory for axis.BсGH2DE124-3-2-10Enter

Respuesta :

Let's complete the transformation from ABCD to EHGF.

Let's first determine the coordinates of the two figures.

Figure ABCD:

A : -5, 2

B : -3, 4

C : -2, 4

D : -1, 2

Figure EHGF:

E : 4, 1

H : 2, 3

G : 1, 3

F : 0, 1

Reflecting ABCD over the y - axis, we get:

P (x, y) = P' (-x, y)

For ABCD:

A : -5, 2 = A' : 5, 2

B : -3, 4 = B' : 3, 4

C: -2, 4 = C' : 2, 4

D: -1, 2 = D' : 1, 2

Let's now complete the translation,

(x + S), (y + T)

Where,

S = translation at x-axis

T = translation at y-axis

We get,

A' : 5, 2 = E : 4, 1 → S, T = 4 - 5, 1 - 2 = -1, -1

B' : 3, 4 = H : 2, 3 → S, T = 3 - 4, 3 - 4 = -1, -1

C' : 2, 4 = G : 1, 3 → S, T = 1 - 2, 3 - 4 = -1, -1

D' : 1, 2 = F: 0, 1 → S, T = 0 - 1, 1 - 2 = -1, -1

Therefore, we can say that the translation is (x + _, y + _) = (x + (-1), y + (-1)) = x - 1, y - 1