In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
f(x) = - 2x² + 4x + 2
Step 02:
y = ax² + bx + c
a = -2
b= 4
c = 2
vertex of the parabola equation
[tex]yv\text{ =- }\frac{b^{2}-4ac}{4a}[/tex][tex]\begin{gathered} yv\text{ = -}\frac{4^2-4\cdot(-2)\cdot(2)}{4\cdot(-2)} \\ yv\text{ = -}\frac{(16+16)_{}}{-8} \end{gathered}[/tex]yv = (- 32) / (- 8)
yv = 4
[tex]xv\text{ = -}\frac{b}{2a}[/tex][tex]\begin{gathered} xv\text{ =- }\frac{4}{2(-2)} \\ xv\text{ = }\frac{-4}{-4} \end{gathered}[/tex]xv = 1
Vertex:
(xv , yv ) = (1 , 4 )
The answer is:
The vertex of the parabola is (1 , 4)