ANSWER:
(a) 4.74*10^14 Hz
(b) 388.22 nm
(c) 184 Mm/s
STEP-BY-STEP EXPLANATION:
We have the following information:
[tex]\begin{gathered} \lambda=632.8\text{ nm} \\ n=1.63 \end{gathered}[/tex](a)
To calculate the frequency we use the following formula:
[tex]\begin{gathered} f=\frac{c}{\lambda} \\ c=3\cdot10^8\text{ m/s} \\ \lambda=632.8\text{ nm }=632.8\cdot10^{-9}\text{ m} \\ \text{replacing:} \\ f=\frac{3\cdot10^8}{632.8\cdot10^{-9}} \\ f=4.74\cdot10^{14}\text{ Hz} \end{gathered}[/tex](b)
In this case, we apply the following:
[tex]\begin{gathered} \lambda_1=\frac{\lambda}{n} \\ \text{ replacing} \\ \lambda_1=\frac{632.8}{1.63} \\ \lambda_1=388.22\text{ nm} \end{gathered}[/tex](c)
To calculate the speed it would be:
[tex]\begin{gathered} v=\frac{c}{n} \\ \text{ replacing} \\ v=\frac{3\cdot10^8}{1.63} \\ v=1.84\cdot10^8 \\ v=184\text{ Mm/s} \end{gathered}[/tex]