Answer:
The number of units that will give the maximum profit is;
[tex]1900\text{ units}[/tex]The maximum possible profit is;
[tex]\text{ \$}239,090[/tex]Explanation:
Given that the weekly revenue for a product is given by ;
[tex]R(x)=307.8x-0.045x^2[/tex]and the weekly cost is ;
[tex]C(x)=10,000+153.9x-0.09x^2+0.00003x^3[/tex]Recall that
Profit = Revenue - Cost
[tex]P(x)=R(x)-C(x)[/tex][tex]\begin{gathered} P(x)=307.8x-0.045x^2-(10,000+153.9x-0.09x^2+0.00003x^3) \\ P(x)=307.8x-0.045x^2-10,000-153.9x+0.09x^2-0.00003x^3 \\ P(x)=153.9x+0.045x^2-0.00003x^3-10,000 \end{gathered}[/tex]Using graph to derive the maximum point on the function;
Therefore, the maximum point is at the point;
[tex](1900,239090)[/tex]So;
The number of units that will give the maximum profit is;
[tex]1900\text{ units}[/tex]The maximum possible profit is;
[tex]\text{ \$}239,090[/tex]