Solution:
Given:
[tex]\sin \theta=-0.9945[/tex]Using the inverse trigonometric function,
[tex]\begin{gathered} \theta=\sin ^{-1}(-0.9945) \\ \theta=-83.988 \\ \theta\approx-84.0^0\text{ to the nearest tenth} \end{gathered}[/tex]However, since the sine of the angle is negative, it shows that the angle is in the third or fourth quadrant.
Hence, the possible values of the angle are,
[tex]\begin{gathered} \theta=-84+360=276.0^0 \\ \theta=180-(-84)=264.0^0 \end{gathered}[/tex]Therefore, the value of the angle to the nearest tenth of a degree is 264.0 degrees or 276.0 degrees.