Which pair of functions are inverse functions?()=3+5f(x)=3x+5and()=−3−5g(x)=−3x−5 ()=−+57f(x)=−x+57and()=−7+5g(x)=−7x+5 ()=−3−57f(x)=−3x−57and()=3+57g(x)=3x+57 ()=3−5f(x)=3x−5and()=−53

Which pair of functions are inverse functions35fx3x5and35gx3x5 57fxx57and75gx7x5 357fx3x57and357gx3x57 35fx3x5and53 class=

Respuesta :

[tex]\begin{gathered} \mathbf{f(x)=\frac{-x+5}{7}} \\ \mathbf{g(x)}=f^{-1}(x)=\mathbf{-7x+5} \end{gathered}[/tex]

1) Let's examine the f(x) functions and find the inverse function of f(x), in the first pair of functions:

a) At first, let's swap x for y in the original function

[tex]\begin{gathered} f(x)=3x+5 \\ y=3x+5 \\ x=3y+5 \\ -3y=-x+5 \\ 3y=\text{ x-5} \\ \frac{3y}{3}=\frac{x-5}{3} \\ y=\frac{x-5}{3}\text{ } \\ f^{-1}(x)=\frac{x-5}{3} \end{gathered}[/tex]

Note that after swapping x for y, we can isolate y on the left side. So as regards g(x) this is not the inverse function of f(x)

2) Similarly, let's check for f(x)

[tex]\begin{gathered} f(x)=\frac{-x+5}{7} \\ y=\frac{-x+5}{7} \\ x=\frac{-y+5}{7} \\ 7x=-y+5 \\ y=-7x+5 \\ f^{-1}(x)=-7x+5 \end{gathered}[/tex]

Note that in this case, we can state that these are inverse functions

[tex]f^{-1}(x)=g(x)[/tex]

3) Finally, let's find out the last pair of functions.

[tex]\begin{gathered} f(x)=\frac{-3x-5}{7} \\ y=\frac{-3x-5}{7} \\ x=\frac{-3y-5}{7} \\ 7x=-3y-5 \\ 3y=-7x-5 \\ f^{-1}(x)=\frac{-7x-5}{3} \end{gathered}[/tex]

So in this pair, g(x) is not the inverse function of f(x).

4) Hence, the answer is following pair:

[tex]\begin{gathered} f(x)=\frac{-x+5}{7}\text{ } \\ g(x)=f^{-1}(x)=-7x+5 \end{gathered}[/tex]