1) Let's examine the f(x) functions and find the inverse function of f(x), in the first pair of functions:
a) At first, let's swap x for y in the original function
[tex]\begin{gathered} f(x)=3x+5 \\ y=3x+5 \\ x=3y+5 \\ -3y=-x+5 \\ 3y=\text{ x-5} \\ \frac{3y}{3}=\frac{x-5}{3} \\ y=\frac{x-5}{3}\text{ } \\ f^{-1}(x)=\frac{x-5}{3} \end{gathered}[/tex]Note that after swapping x for y, we can isolate y on the left side. So as regards g(x) this is not the inverse function of f(x)
2) Similarly, let's check for f(x)
[tex]\begin{gathered} f(x)=\frac{-x+5}{7} \\ y=\frac{-x+5}{7} \\ x=\frac{-y+5}{7} \\ 7x=-y+5 \\ y=-7x+5 \\ f^{-1}(x)=-7x+5 \end{gathered}[/tex]Note that in this case, we can state that these are inverse functions
[tex]f^{-1}(x)=g(x)[/tex]3) Finally, let's find out the last pair of functions.
[tex]\begin{gathered} f(x)=\frac{-3x-5}{7} \\ y=\frac{-3x-5}{7} \\ x=\frac{-3y-5}{7} \\ 7x=-3y-5 \\ 3y=-7x-5 \\ f^{-1}(x)=\frac{-7x-5}{3} \end{gathered}[/tex]So in this pair, g(x) is not the inverse function of f(x).
4) Hence, the answer is following pair:
[tex]\begin{gathered} f(x)=\frac{-x+5}{7}\text{ } \\ g(x)=f^{-1}(x)=-7x+5 \end{gathered}[/tex]