To estimate the cost (C) after t years with an increasing rate r, use the formula below:
[tex]C(t)=C_0*\left(1+r\right)^t[/tex]
In this question:
C0 = initial cost = $2.75
r = rate = 0.05
t = time = 10 years
Substituting the values in the equation:
[tex]\begin{gathered} C(10)=2.75*\left(1+0.05\right)^{10} \\ C(10)=2.75*1.05^{10} \\ C(10)=2.75*1.629 \\ C(10)=4.48 \end{gathered}[/tex]Answer:
Equation:
[tex]\begin{gathered} C(t)=2.75(1+0.05)^t \\ C(10)=2.75(1+0.05)^{10} \end{gathered}[/tex]Cost: C(10) = $4.48.