Respuesta :

Solution

The given function is

[tex]f(x)=4x^3[/tex]

With given interval

[tex]\lbrack1,2\rbrack[/tex]

The function is differentiable on the open interval (1,2) and it is continuous on the closed interval [1,2]

Therefore mean value theorem can be used

Calculating the c value iit follows:

[tex]f^{\prime}(c)=\frac{f(2)-f(1)}{2-1}[/tex]

This gives

[tex]\begin{gathered} f^{\prime}(c)=\frac{4(2)^3-4(1)^3}{1} \\ f^{\prime}(c)=\frac{32-4}{1} \\ f^{\prime}(c)=28 \end{gathered}[/tex]

Differentiating the given function gives:

[tex]f^{\prime}(x)=12x^2[/tex]

Equate f'(c) and f'(x)

This gives

[tex]x^2=\frac{28}{12}[/tex]

Solve the equation for x

[tex]\begin{gathered} x^2=\frac{28}{12} \\ x^2=\frac{7}{3} \\ x=\pm\sqrt{\frac{7}{3}} \\ x=\sqrt{\frac{7}{3}},x=-\sqrt{\frac{7}{3}} \end{gathered}[/tex]

Therefore the values of c are

[tex]\sqrt{\frac{7}{3}},-\sqrt{\frac{7}{3}}[/tex]