In order to calculate the standard deviation, we can use the following formula:
[tex]\sigma=\sqrt[]{\frac{\sum ^N_i(x_i-\mu)^2}{N}}[/tex]Where μ is the average of the sample and N is the number of elements.
So, calculating the average, we have:
[tex]\mu=\frac{3+9+4+4+4+9+9}{7}=\frac{42}{7}=6[/tex]Now, using N = 7 and calculating the standard deviation, we have:
[tex]\begin{gathered} \sigma=\sqrt[]{\frac{(3-6)^2+(9-6)^2+(4-6)^2+(4-6)^2+(4-6)^2+(9-6)^2+(9-6)^2}{7}} \\ \sigma=\sqrt[]{\frac{9+9+4+4+4+9+9}{7}} \\ \sigma=\sqrt[]{\frac{48}{7}} \\ \sigma=2.6 \end{gathered}[/tex]So the standard deviation is 2.6.