POSSIIn the diagram below, DH intersects CA and EF at B and G, respectively.BEGHIf mZBGA=52, mZGAB=70° and mZBGE=58Determine m ZABGand m ZAGF =

Respuesta :

The lines CA and EF are parallel. Also, Both lines intersect the transversal line DH.

Now, the angles m∠BGA, m∠GAB and m∠ABG represent a triangle.

The measures of interior angles of a triangle sum to 180 degrees.

If m∠BGA = 52 and m∠GAB = 70.

Then

m∠BGA + m∠GAB + m∠ABG = 180

Replacing the angles values:

52 + 70 + m∠ABG = 180

Solve for m∠ABG

122 + m∠ABG = 180

m∠ABG = 180-122

m∠ABG = 58

To find m∠AGF, we need to know that angles m∠BGE, m∠ABG, and m∠AGF represent a straight line. Also, "Angles on a straight line add up to 180°."

Therefore:

m∠BGE + m∠BGA + m∠AGF = 180

If m∠BGE = 58 and m∠ABG = 58, we can replace these values and solve for m∠AGF.

Hence:

58 + 52 + m∠AGF = 180

110 + m∠AGF = 180

Solving for m∠AGF

m∠AGF = 180 - 110

m∠AGF = 70