Given:
a)
[tex]f(x)=66.925x^{0.044}[/tex]Here, x is the number of years after 1999.
For the year 2002,
[tex]\begin{gathered} 2002-1999=3 \\ So,\text{ x=3} \\ f(x)=66.925x^{0.044} \\ f(3)=66.925(3)^{0.044} \\ =70.240\text{ percent} \end{gathered}[/tex]For the year 2009,
[tex]\begin{gathered} 2009-1999=10 \\ So,\text{ x=10} \\ f(x)=66.925x^{0.044} \\ f(10)=66.925(10)^{0.044} \\ =74.061 \end{gathered}[/tex]Answer:
The total percent in 2002 is 70.240 %
The total percent in 2009 is 74.061 %.
b) The graph of the function from 2002 to 2017 is, The
c) For f(x)=100,
[tex]\begin{gathered} f(x)=66.925x^{0.044} \\ 100=66.925x^{0.044} \\ \frac{100}{66.925}=x^{0.044} \\ x^{0.044}=\frac{100}{66.925} \\ Note\colon0.044=\frac{11}{250}^{} \\ (x^{0.044}_{})^{\frac{250}{11}}=(\frac{100}{66.925})^{\frac{250}{11}} \\ x=(\frac{100}{66.925})^{\frac{250}{11}} \end{gathered}[/tex]It implies that the value of x will exist for which the percentage will become 100.