Use the power-reducing formulas to rewrite the expression in terms of first powers of the cosines of multiple angles.4 sin4(2x)

Use the powerreducing formulas to rewrite the expression in terms of first powers of the cosines of multiple angles4 sin42x class=

Respuesta :

We have to reduce the expression:

[tex]4\sin^4(2x)[/tex]

With power-reducing formulas we use identities that let us replace higher exponents terms with lower exponents terms.

We can start using the following identity:

[tex]\sin^2\theta=\frac{1}{2}(1-\cos2\theta)[/tex]

Replacing in our formula we obtain:

[tex]\begin{gathered} 4\sin^4(2x)=4[\frac{1}{2}(1-\cos(4x))]^2 \\ 4\sin^4(2x)=4\cdot(\frac{1}{2})^2[1-\cos(4x)]^2 \\ 4\sin^4(2x)=4\cdot\frac{1}{4}\cdot(1^2-2\cos(4x)+\cos^2(4x)) \\ 4\sin^4(2x)=1-2\cos(4x)+\cos^2(4x) \end{gathered}[/tex]

We can replace the last term using this identity:

[tex]\cos^2\theta=\frac{1}{2}(1+\cos2\theta)[/tex]

Then, we will obtain:

[tex]\cos^2(4x)=\frac{1}{2}[1+\cos(8x)][/tex]

Replacing in the equation we obtain:

[tex]\begin{gathered} 1-2\cos(4x)+\cos^2(4x) \\ 1-2\cos(4x)+\frac{1}{2}(1+\cos(8x)) \\ 1-2\cos(4x)+\frac{1}{2}+\frac{1}{2}\cos(8x) \\ \frac{3}{2}-2\cos(4x)+\frac{1}{2}\cos(8x) \end{gathered}[/tex]

Answer:

3/2 - 2*cos(4x) + 1/2*cos(8x)