The equation of a parabola in vertex form is given by:
[tex]y=a(x-h)^2+k[/tex]where h and k are the coordinates of the center of the vertex
The given equation
[tex]y=2x^2+4x-5[/tex]can be expressed in vertex form by following the steps:
Step1: factor out 2 to get a
[tex]y=2(x^2+2)-5[/tex]Step2: find the square of half of 2
[tex]\Rightarrow1^2[/tex]Step 3: Re-write the equation
[tex]\begin{gathered} y=2(x^2+2+1^2)-1^2-5 \\ y=2(x+1)^2_{}-1^2-5 \end{gathered}[/tex][tex]y=2(x+1)^2-6[/tex]Thus the equation of the vertex is
[tex]\begin{gathered} y=2(x+1)^2-6 \\ \end{gathered}[/tex]If we compare this with the equation of a parabola in vertex form
[tex]\begin{gathered} a=2 \\ h=-1 \\ k=-6 \end{gathered}[/tex]From the values given
Part A
The vertex of the parabola is
[tex]\begin{gathered} \Rightarrow\text{ (-1,-6)} \\ \Rightarrow h=-1,\text{ k=-6} \end{gathered}[/tex]Part B
From the equation
a=2
Since the value of a is a positive, The vertex is a minimum