Given: vertex (1,2) passing through (2,5).
Find: quadratic function.
Explanation: the vertex form of equation is
[tex]f(x)=a(x-h)^2\text{ +k }[/tex]where( h,k) represents the vertex so on putting the value of x =2 and f(x)=5, we get
[tex]\begin{gathered} 5=a(2-1)^2+2 \\ a=3 \end{gathered}[/tex]hence the quadratic function is
[tex]\begin{gathered} f(x)=3(x-1)^2+2 \\ =3(x^2+1-2x)+2 \\ =3x^2+3-6x+2 \\ =3x^2-6x+5 \end{gathered}[/tex]Final answer: the quadratic function is
[tex]f(x)=3x^2-6x+5[/tex]