Respuesta :

Given: An expression-

[tex]u^4x^3-81x^3[/tex]

Required: To factorize the given expression.

Explanation: The difference of the square formula is-

[tex]a^2-b^2=(a+b)(a-b)[/tex]

Now the given expression can be factorized as follows-

[tex]x^3(u^4-81)[/tex]

Further, we have-

[tex]x^3[(u^2)^2-(3^2)^2][/tex]

Applying the difference of square formula,

[tex]x^3(u^2-3^2)(u^2+3^2)[/tex]

We can further factorize the expression as-

[tex]x^3(u+3)(u-3)(u^2+9)[/tex]

Now plotting the graph,

Let

[tex]y=x^3(u+3)(u-3)(u^2+9)[/tex]

Now the graph will depend on the value of u.

The graph will be a line y=0 at u=3 and u=-3.

For u<-3, the graph is-

For -3

Finally, for u>3 we have

Final Answer: The factorized form of the expression is

[tex]x^3(u+3)(u-3)(u^2+9)[/tex]

,,

Ver imagen SteffanE629362
Ver imagen SteffanE629362
Ver imagen SteffanE629362