First, we find the acceleration of the car using the following formula.
[tex]v_f=v_0+at[/tex]Where the final speed is zero (because the car stops), the initial speed is 86.55 km/h, and the time is 4.163 seconds. Let's replace these magnitudes and solve for a.
[tex]\begin{gathered} 0=86.55(\frac{km}{h})+a\cdot4.163\sec \\ -86.55(\frac{km}{h})=a\cdot4.163\sec \\ a=\frac{-86.55(\frac{km}{h})}{4.163\sec } \end{gathered}[/tex]But, we have to transform the speed from km/h to m/s.
[tex]\frac{86.55\operatorname{km}}{h}\cdot\frac{1000m}{1\operatorname{km}}\cdot\frac{1h}{3600\sec }\approx24.04(\frac{m}{s})[/tex]Then, we use this transformation to find the acceleration.
[tex]\begin{gathered} a=\frac{-24.04(\frac{m}{s})}{4.163\sec } \\ a\approx5.77(\frac{m}{s^2}) \end{gathered}[/tex]Once we have the acceleration, we can use Newton's Second Law to find the net force.
[tex]F=ma[/tex]Let's replace the mass and acceleration to find F.
[tex]\begin{gathered} F=1066\operatorname{kg}\cdot5.77(\frac{m}{s^2}) \\ F=6150.82N \end{gathered}[/tex]