(1)
The given quadratic equation is,
[tex]3x^2+5x+10=0\text{ ---(1)}[/tex]The above equation is similar to the equation given by,
[tex]ax^2+bx+c=0\text{ ---(2)}[/tex]Comparing equations (1) and (2), we get a=3, b=5 and c=10.
Use discriminant method to solve equation (1).
[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ =\frac{-5\pm\sqrt[]{5^2-4\cdot3\cdot10}}{2\cdot3} \\ =\frac{-5\pm\sqrt[]{25^{}-120}}{6} \\ =\frac{-5\pm\sqrt[]{-95}}{6}\text{ ---(3)} \end{gathered}[/tex]Since
[tex]i=\sqrt[]{-1}[/tex]equation (3) becomes,
[tex]\begin{gathered} x=\frac{-5\pm\sqrt[]{95}i}{6} \\ x=\frac{-5}{6}\pm\frac{\sqrt[]{95}}{6}i \\ x=\frac{-5}{6}+\frac{\sqrt[]{95}}{6}i\text{ or x=}\frac{-5}{6}-\frac{\sqrt[]{95}}{6}i \end{gathered}[/tex]Therefore, the solutions of the given quadratic equation are,
[tex]x=-\frac{5}{6}+\frac{\sqrt[]{95}}{6}i\text{ , x=-}\frac{5}{6}-\frac{\sqrt[]{95}}{6}i[/tex]