Given:
[tex]\begin{gathered} Container-A \\ Diameter(dA)=26feet,Height(hA)=20feet \\ Container-B \\ Diamter(dB)=36feet,Height(hB)=19feet \end{gathered}[/tex]To Determine: The volume of the empty portion of container B
Solution
The container is in the shape of a cylinder. The volume of a cylinder can be calculated as shown below
[tex]Volume(Cylinder)=\pi r^2h[/tex]So,
[tex]\begin{gathered} VA=\pi(rA)^2hA \\ VB=\pi(rB)^2hB \\ Note \\ rA=\frac{dA}{2}=\frac{26}{2}=13feet \\ rB=\frac{dB}{2}=\frac{36}{2}=18feet \end{gathered}[/tex]Let us substitute the given into the formula
[tex]\begin{gathered} VA=\pi(13)^2\times20=3380\pi ft^3 \\ VB=\pi(18)^2\times19=6156\pi ft^3 \end{gathered}[/tex]The volume of the empty portion of container B would be
[tex]\begin{gathered} V(empty-portion)=6156\pi ft^3-3380\pi ft^3=2776\pi ft^3=8721.06ft^3 \\ \approx8721.1ft^3 \end{gathered}[/tex]Hence, the volume of the empty portion of conatiner B is approximately 8721.1 cubic foot