[tex]\begin{gathered} \text{Pattern 4.} \\ \text{red square means that 1 must be added to the final resul. Now, blue square follow the patern 3x. For example, when } \\ x=1\Rightarrow3x=3 \\ x=2\Rightarrow3x=6 \\ \text{and so on. This gives you the blue square pattern. Hence, the final result must be} \\ 3x+1=y \end{gathered}[/tex][tex]\begin{gathered} \text{Pattern 3.} \\ \text{This pattern begins with 1 square, followed by 5 squares and 9 squares. You can s}ee\text{ that the difference betw}en\text{ them is 4.} \\ \text{Hence we ne}ed\text{ a fomula with 4. You can s}ee\text{ that the first one match with this pattern} \\ 4x-3=y \\ \text{For example,} \\ x=1\Rightarrow4(1)-3=1\text{ square} \\ x=2\Rightarrow4(2)-3=5\text{ squares} \\ x=3\Rightarrow4(3)-3=9\text{ squares} \end{gathered}[/tex]