Respuesta :

Answer:

Given that,

In circle,

measure of angle DGE is 52 degrees

[tex]m(arcDE)=(4x+39)\degree[/tex]

To solve for x,

we know that,

The angle formed by the two secants that intersect on the circle is half of the intercepted arcs.

Using this we get,

[tex]\angle DGE=\frac{1}{2}(arc(DE))[/tex]

Substitute the values we get,

[tex]52\degree=\frac{(4x+39)\degree}{2}[/tex][tex]104=4x+39[/tex][tex]4x=104-39[/tex][tex]4x=63[/tex][tex]x=\frac{63}{4}[/tex][tex]x=15.75[/tex]

Round the answer to the nearest tenth.

[tex]x=15.8[/tex]

Answer is:

[tex]x=15.8[/tex]