Solution:
The solution given in the question is given below as
[tex]y=\frac{1}{2}x-2[/tex]The coordinates given in the question are
[tex](x_1,y_1)=(-4,5)[/tex]Concept:
The general formula of an equation of a line in slope-intercept form is given below as
[tex]\begin{gathered} y=mx+c \\ \text{where,} \\ m=\text{slope} \\ c=y-\text{intercept} \end{gathered}[/tex]By comparing coeficient,
[tex]m_1=\frac{1}{2}[/tex]Note:
Two lines are said to be parallel if they have the same slope
[tex]m_1=m_2[/tex]Therefore,
[tex]m_2=\frac{1}{2}[/tex]The formula used to calculate the equation of a line is given below as
[tex]m_2=\frac{y-y_1}{x-x_1}[/tex]By substituting the values, we will have
[tex]\begin{gathered} m_2=\frac{y-y_1}{x-x_1} \\ \frac{1}{2}=\frac{y-5}{x-(-4)} \\ \frac{1}{2}=\frac{y-5}{x+4} \\ \text{cross mutilply, we will have} \\ 2(y-5)=1(x+4) \\ 2y-10=x+4 \\ 2y=x+4+10 \\ 2y=x+14 \\ \text{divide all through by 2} \\ \frac{2y}{2}=\frac{x}{2}+\frac{14}{2} \\ y=\frac{1}{2}x+7 \end{gathered}[/tex]Hence,
The final answer is
[tex]y=\frac{1}{2}x+7[/tex]