Respuesta :

A Quadratic equation can have the form:

[tex]ax^2+bx+c=0[/tex]

Where "a" is the Leading coefficient.

In this case, you have the following Quadratic equation:

[tex]15b^2+4b-4=0[/tex]

You can rewrite it as following:

[tex]15x^2+4x-4=0[/tex]

The steps to factorize it are shown below:

1. Use the Quadratic formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

2. You can see that:

[tex]\begin{gathered} a=15 \\ b=4 \\ c=-4 \end{gathered}[/tex]

3. Substitute values into the Quadratic formula and evaluate:

[tex]\begin{gathered} x=\frac{-4\pm\sqrt[]{4^2-4(15)(-4)}}{2(15)} \\ \\ x_1=\frac{2}{5} \\ \\ x_2=-\frac{2}{3} \end{gathered}[/tex]

4. Substituting the variable "x" by the variable "b", you can write it in the following factor form:

[tex]15(b-\frac{2}{5})(b+\frac{2}{3})=0[/tex]

The answer is:

[tex]15(b-\frac{2}{5})(b+\frac{2}{3})=0[/tex]