SOLUTION
Write out the expression
[tex]7p^2+16p+4[/tex]Step1; Multiply the first and the last term
[tex]\begin{gathered} 7p^2\times4=28p^2 \\ \text{second term=16p} \end{gathered}[/tex]Step2: Obtain the factors of that completely replace the product and the second term above
[tex]\begin{gathered} 28p^2=14p\times2p \\ 16p=14p+2p \end{gathered}[/tex]Step3: Replace the second term with the factors you obtained above
[tex]\begin{gathered} 7p^2+16p+4 \\ 7p^2+2p+14p+4 \end{gathered}[/tex]Step4: Break the expression into groups
[tex]\mleft(7p^2+2p\mright)+\mleft(14p+4\mright)[/tex]Step5: Factor the expression in paranthesis
[tex]\begin{gathered} (7p^2+2p)+(14p+4) \\ p(7p+2)+2(7p+2) \\ (7p+2)(p+2) \end{gathered}[/tex]Hence
The complete factor of the trinomial is (7p+2)(p+2)