Answer:
• V'(4)=-456.10
,• V'(6)=-129.35
Explanation:
Given the function V which is defined as follows:
[tex]V=9000e^{-0.6301t},0\leq t\leq10[/tex]First, find the derivative of V with respect to time.
[tex]\begin{gathered} \frac{dV}{dt}=9000\frac{d}{dt}(e^{-0.6301t}) \\ \text{ The derivative of }e^{kt}=ke^{kt} \\ V^{\prime}(t)=9000(-0.6301)e^{-0.6301t} \end{gathered}[/tex]I. When t=4
[tex]\begin{gathered} V^{\prime}(t)=9000(-0.6301)e^{-0.6301t} \\ V^{\prime}(4)=9000(-0.6301)e^{-0.6301\times4} \\ =-456.10 \end{gathered}[/tex]The rate of change when t=4 is -456.10 (correct to 2 decimal places).
II. When t=6
[tex]\begin{gathered} V^{\prime}(t)=9000(-0.6301)e^{-0.6301t} \\ V^{\prime}(4)=9000(-0.6301)e^{-0.6301\times6} \\ =-129.35 \end{gathered}[/tex]The rate of change when t=6 is -129.35 (correct to 2 decimal places).