Respuesta :

Given:

Roots:

[tex]\begin{gathered} -3+\sqrt[]{6} \\ -3-\sqrt[]{6} \end{gathered}[/tex]

Point: (-1,4)

To determine the equation of the parabola with the given roots and point, we find the missing values first.

Since the roots are given, we can say that the equation is:

[tex]y=a(x+3-\sqrt[]{6})(x+3+\sqrt[]{6})[/tex]

Next, we expand the terms.

[tex]y=a(x^2+6x+3)[/tex]

Then, we plug in x= -1, and y=4 into the equation to get the value of a.

[tex]\begin{gathered} y=a(x^2+6x+3) \\ 4=a((-1)^2+6(-1)+3) \\ \text{Simplify and rearrange} \\ 4=a(-2) \\ a=\frac{4}{-2} \\ a=-2 \end{gathered}[/tex]

So,

[tex]undefined[/tex]