ANSWER:
[tex](x^{2}-2)^{3}=x^{6}-6x^{4}+12x^{2}-8[/tex]STEP-BY-STEP EXPLANATION:
Pascal's triangle applies to this as follows:
Therefore, we apply for this case:
[tex]\begin{gathered} (a-b)^3=a^3-3a^2b+3ab^2-b^3 \\ \\ a=x^2 \\ \\ b=2 \\ \\ \left(x^2-2\right)^3=\left(x^2\right)^3-3\left(x^2\right)^2\cdot\:2+3x^2\cdot\:2^2-2^3 \\ \\ \left(x^2-2\right)^3=x^{2\cdot\:3}-6\left(x^2\right)^2+3x^2\cdot\:4-8 \\ \\ \left(x^2-2\right)^3=x^6-6x^4+12x^2-8 \end{gathered}[/tex]