Answer:
[tex]\frac{f(x+h)-f(x)}{h}=4[/tex]Step-by-step explanation:
Given the function, solve for the difference quotient:
[tex]f(x)=4x+6[/tex]Therefore,
[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{4(x+h)+6-4x+6}{h} \\ \frac{4(x+h)+6-4x+6}{h}=\frac{4x+4h+6-4x-6}{h}=\frac{4h}{h}=4 \\ \text{Then, the difference quotient of the function:} \\ f(x)=4x+6;\frac{f(x+h)-f(x)}{h}=4 \end{gathered}[/tex]