Q.1 - A beach ball has a radius of 10 inches. Find volume and Round to the nearest tenth.Q. 2 - Find the volume of a hemisphere with a radius of 6 m. Round to the nearest tenth.Q. 3 - Calculate the volume of the sphere. Round to the nearest tenth.

Q1 A beach ball has a radius of 10 inches Find volume and Round to the nearest tenthQ 2 Find the volume of a hemisphere with a radius of 6 m Round to the neares class=
Q1 A beach ball has a radius of 10 inches Find volume and Round to the nearest tenthQ 2 Find the volume of a hemisphere with a radius of 6 m Round to the neares class=

Respuesta :

Q1)

Given:

The radius of the ball is 10 inches.

Required:

We need to find the volume of the ball.

Explanation:

The shape of the ball is a sphere.

Consider the volume of the sphere formula.

[tex]V=\frac{4}{3}\pi r^3[/tex]

Substitute r =10 in the formula.

[tex]V=\frac{4}{3}\times3.14\times(10)^3[/tex][tex]V=\frac{4}{3}\times3.14\times1000[/tex][tex]V=4186.7\text{ in}^3[/tex]

Answer:

The volume of the ball is 4186.7 cubic inches.

Q2)

Given:

The radius of the hemisphere is 6m.

Required:

We need to find the volume of the hemisphere.

Explanation:

Consider the volume of the hemisphere formula.

[tex]V=\frac{2}{3}\pi r^3[/tex]

Substitute r =6 in the formula.

[tex]V=\frac{2}{3}\times3.14\times6^3[/tex][tex]V=452.2m^3[/tex]

Answer:

The volume of the hemisphere is 452.2 cubic meters.

Q3)

Given:

The diameter of the sphere is 2.6m.

Required:

We need to find the volume of the sphere.

Explanation:

Consider the radius formula.

[tex]r=\frac{d}{2}[/tex]

Substitute d =2.6 in the formula.

[tex]r=\frac{2.6}{2}=1.3m.[/tex]

Consider the volume of the sphere formula.

[tex]V=\frac{4}{3}\pi r^3[/tex]

Substitute r =1.3 in the formula.

[tex]V=\frac{4}{3}\times3.14\times(1.3)^3[/tex][tex]V=9.2\text{ m}^3[/tex]

Answer:

The volume of the given sphere is 9.2 cubic meters.

Q4)

Given:

The diameter of the sphere is 8 ft.

Required:

We need to find the volume of the sphere.

Explanation:

Consider the radius formula.

[tex]r=\frac{d}{2}[/tex]

Substitute d =8 in the formula.

[tex]r=\frac{8}{2}=4ft[/tex]

Consider the volume of the sphere formula.

[tex]V=\frac{4}{3}\pi r^3[/tex]

Substitute r =4 in the formula.

[tex]V=\frac{4}{3}\times3.14\times(4)^3[/tex][tex]V=267.9ft^3[/tex]

Answer:

The volume of the given sphere is 267.9 cubic feet.