The figure is the composition of two other figures:
• a square of size L = 12ft,
,• a semi-circle of diameter d = 12ft.
The total area of the figure is equal to the sum of the areas of each subfigure:
[tex]A_{\text{Total}}=A_{\text{Square}}+A_{\text{Semi}-\text{circle}}\text{.}[/tex]The area of the square is:
[tex]A_{\text{Square}}=L^2=(12ft)^2=144ft^2.[/tex]The area of the semi-circle is half the area of a circle of the same diameter:
[tex]A_{\text{Semi}-\text{circle}}=\frac{1}{2}\cdot A_{\text{Circle}}=\frac{1}{2}\cdot\frac{1}{4}\pi d^2=\frac{1}{8}\cdot\pi\cdot(12ft)^2=18\pi ft^2\cong56.5ft^2.[/tex]Summing the areas, we get:
[tex]A_{\text{Total}}\cong144ft^2+56.5ft^2=200.5ft^2.[/tex]Answer
E) 200.5ft²