Transform AABC by the following transformations:• Reflect across the line y = -X• Translate 1 unit to the right and 2 units down.7BА)-6521-8-7-6-54-3-2-1027583-1-2-3-4-5-6-7-8Identify the final coordinates of each vertex after both transformations:A" (B"(C" (

Transform AABC by the following transformations Reflect across the line y X Translate 1 unit to the right and 2 units down7BА65218765432102758312345678Identify class=

Respuesta :

The Solution.

The given transformation is defined by the reflection below:

[tex](x,y)\rightarrow(-y,-x)[/tex][tex](-y,-x)+(+1,-2)=(-y+1,-x-2)[/tex]

Reflecting 1 unit to the right and 2 units down, we have

[tex](-y,-x)+(+1,-2)=(-y+1,-x-2)[/tex]

So, the required coordinates of the vertices are

[tex]A(3,6)\rightarrow A^{\prime}(-6+1,-3-2)=A^{\prime}(-5,-5)[/tex][tex]B(-2,6)\rightarrow B^{\prime}(-6+1,2-2)=B^{\prime}(-5,0)[/tex][tex]C(3,-3)\rightarrow C^{\prime}(3+1,-3-2)=C^{\prime}(4,-5)[/tex]